Oxidative stress-mediated apoptosis. The anticancer effect of the sesquiterpene lactone parthenolide.

نویسندگان

  • Jing Wen
  • Kyung-Ran You
  • So-Youn Lee
  • Chang-Ho Song
  • Dae-Ghon Kim
چکیده

The sesquiterpene lactone parthenolide, the principal active component in medicinal plants, has been used conventionally to treat migraines, inflammation, and tumors. However, the antitumor effects of parthenolide and the mechanism(s) involved are poorly understood. We found that parthenolide effectively inhibits hepatoma cell growth in a tumor cell-specific manner and triggers apoptosis of hepatoma cells. Parthenolide triggered apoptosis in invasive sarcomatoid hepatocellular carcinoma cells (SH-J1) as well as in other ordinary hepatoma cells at 5-10 microm concentrations and arrested the cell growth (at G(2)/M) at sublethal concentrations (1-3 microm). During parthenolide-induced apoptosis, depletion of glutathione, generation of reactive oxygen species, reduction of mitochondrial transmembrane potential, activation of caspases (caspases-7, -8, and -9), overexpression of GADD153 (an oxidative stress or anticancer agent inducible gene), and subsequent apoptotic cell death was observed. This induced apoptosis could be effectively inhibited or abrogated by an antioxidant N-acetyl-l-cysteine, whereas l-buthionine-(S,R)-sulfoximine enhanced it. Furthermore, stable overexpression of GADD153 sensitized the cells to apoptosis induced by parthenolide, and this susceptibility could be reversed by transfection with an antisense to GADD153. Parthenolide did not alter the expression of Bcl-2 or Bcl-X(L) proteins during apoptosis in hepatoma cells. Oxidative stress may contribute to parthenolide-induced apoptosis and to GADD153 overexpression in a glutathione-sensitive manner. The sensitivity of tumor cells to parthenolide appears to result from the low expression level of the multifunctional detoxification enzyme glutathione S-transferase pi. Finally, parthenolide and its derivatives may be useful chemotherapeutic agents to treat these invasive cancers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anti-proliferative effect and apoptotic induction of sesquiterpene lactone parthenolide in a human breast cancer cell line

Parthenolide is a secondary metabolite, which naturally occurs in the feverfew plant and is responsible for its healing power. The potential of parthenolide in inhibition of cancer cell growth, alone or in combination with other anti-cancer therapeutics, have been studied in several laboratories. In this study, the effect of extracted parthenolide on the expression of seven pro-apoptotic genes,...

متن کامل

Parthenolide suppresses pancreatic cell growth by autophagy-mediated apoptosis

Pancreatic cancer is an aggressive malignancy and is unresponsive to conventional chemotherapies. Parthenolide, a sesquiterpene lactone isolated from feverfew, has exhibited potent anticancer effects against various cancers. The purpose of this report was to investigate the effect and underlying mechanism of parthenolide in human pancreatic cancer Panc-1 and BxPC3 cells. The results demonstrate...

متن کامل

Santamarine Inhibits NF-кB and STAT3 Activation and Induces Apoptosis in HepG2 Liver Cancer Cells via Oxidative Stress.

Sesquiterpene lactones have long been used in traditional Chinese medicines to treat inflammatory diseases. Recently, sesquiterpene lactone family compounds have been recognized as potential anticancer agents. Thus, it is necessary to explore new sesquiterpene lactones and their antitumor mechanism for cancer treatments. In the present study, we have explored the potential anti-cancer activity ...

متن کامل

Parthenolide-Induced Cytotoxicity in H9c2 Cardiomyoblasts Involves Oxidative Stress.

BACKGROUND Cardiac cellular injury as a consequence of ischemia and reperfusion involves nuclear factor-κB (NF-κ B), amongst other factors, and NF-κ B inhibitors could substantially reduce myocardial infarct size. Parthenolide, a sesquiterpene lactone compound which could inhibit NF-κ B, has been shown to ameliorate myocardial reperfusion injury but may also produce toxic effects in cardiomyocy...

متن کامل

Santamarine Inhibits NF-κB Activation and Induces Mitochondrial Apoptosis in A549 Lung Adenocarcinoma Cells via Oxidative Stress

Santamarine (STM), a sesquiterpene lactone component of Magnolia grandiflora and Ambrosia confertiflora, has been shown to possess antimicrobial, antifungal, antibacterial, anti-inflammatory, and anticancer activities. However, no study has yet been conducted to investigate the molecular mechanism of STM-mediated anticancer activity. In the present study, we found that STM inhibits growth and i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 277 41  شماره 

صفحات  -

تاریخ انتشار 2002